Computational Fluid Dynamics

نویسنده

  • A.E.P. Veldman
چکیده

iii Preface There is fluid flow everywhere around us: air is flowing past airplanes, cars and buildings; water is flowing past ships, through rivers and harbours; oil is flowing through pipelines and in underground reservoirs; blood is flowing through our arteries. And the most important flow around us has not even been mentioned: the air flow in the atmosphere that determines our weather. It will be clear that for weather prediction and for the design of airplanes, cars, ships, etc. knowledge of flow phenomena is essential. Such knowledge can be obtained along three ways: experiment, theory and computer simulation. Experiment: The oldest way of acquiring flow knowledge is by experiment. The Wright brothers already had built a small windtunnel to design their first airplane. Currently windtunnels are usually impressive buildings; the experiment time required for a new design is typically 10.000 to 20.000 hours. Even with two shifts a day (i.e. 16 working hours per day) such an experiment program takes three to five years. And the time for making the scale model, and for analysing the measurement data has not even been accounted for. Today, such a long time for development is not acceptable anymore, and a faster way has to found. Theory: Flow research can also be carried out along a theoretical way. More than one and a half century ago already (Navier 1823, Stokes 1845) the equations describing the flow of air and water were derived: the Navier–Stokes equations. With pencil and paper these equations cannot be solved. Only if the equations are simplified strongly, this theoretical approach can produce adequate information. Computer simulation: In the modern computer era, another approach has become feasible: computer simulation. Here, the Navier–Stokes equations are solved with methods developed in the realm of numerical mathematics. There is still a role for experiments, but different from before: experiments will mainly serve as validation of the computational results. Contents 1 The convection-diffusion equation 1 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational fluid dynamics study and GA modeling approach of the bend angle effect on thermal-hydraulic characteristics in zigzag channels

In the study, the thermal-hydraulic performance of the zigzag channels with circular cross-section was analyzed by Computational Fluid Dynamics (CFD). The standard K-Ꜫ turbulent scalable wall functions were used for modeling. The wall temperature was assumed constant 353 K and water was used as the working fluid. The zigzag serpentine channels with bend angles of 5 - 45° were studied for turbul...

متن کامل

Investigation of stepped planning hull hydrodynamics using computational fluid dynamics and response surface method

The use of step at the bottom of the hull is one of the effective factors in reducing the resistance and increasing the stability of the Planning hull. The presence of step at the bottom of this type of hulls creates a separation in the flow, which reduces the wet surface on the hull, thus reducing the drag on the body, as well as reducing the dynamic trim. In this study, a design space was cre...

متن کامل

Three Dimensional Computational Fluid Dynamics Analysis of a Proton Exchange Membrane Fuel Cell

A full three-dimensional, single phase computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both the gas distribution flow channels and the Membrane Electrode Assembly (MEA) has been developed. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region are developed and numer...

متن کامل

Computational fluid dynamics simulations for investigation of parameters affecting goaf gas distribution

It is necessary to obtain a fundamental understanding of the goaf gas flow patterns in longwall mine in order to develop optimum goaf gas drainage and spontaneous combustion (sponcom) management strategies. The best ventilation layout for a longwall underground mine should assist in goaf gas drainage and further reduce the risk of sponcom in the goaf. Further, in the longwall panel, regulators ...

متن کامل

Unsteady-state Computational Fluid Dynamics Modeling of Hydrogen Separation from H2/N2 Mixture

3D modeling of Pd/α-Al2O3 hollow fiber membrane by using computational fluid dynamic for hydrogen separation from H2/N2 mixture was considered in steady and unsteady states by using the concept of characteristic time. Characteristic time concept could help us to design and calculate surface to volume ratio and membrane thickness, and adjust the feed conditions. The contribution of resistance be...

متن کامل

CFD-Calculation of Fluid Flow in a

An accurate description of the fluid flow and heat transfer within a Pressurized Water Reactor (PWR), for the safety analysis and reactor performance is always desirable. In this paper a mathematical model of the fundamental physical phenomena which are associated to a typical PWR is presented. The mathematical model governs the fluid dynamics in the reactor. Using commercial software CFX, a co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002